Introduction to **Trigonometry**

Multiple Choice Questions

Q: 1 In a right-angled triangle, there is an acute angle p such that $tan p = \frac{12}{5}$.

What is the value of sec $(90^{\circ} - p)$?

$$\frac{5}{13}$$

$$\frac{5}{12}$$

$$\frac{12}{13}$$

4
$$\frac{13}{12}$$

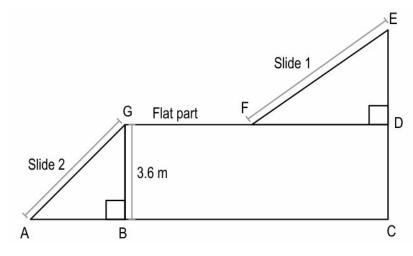
 $\mathsf{Q:2}$ Two statements are given below - one labelled Assertion (A) and the other labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).

Assertion (A) : The value of tan $20^{\circ} = \frac{\tan 60^{\circ}}{3} = \frac{\sqrt{3}}{3}$.

Reason (R): For an acute angle θ , tan $(\frac{1}{3}\theta) = \frac{1}{3}\tan\theta$.

Both (A) and (R) are true and (R) is the correct explanation for (A).

2 Both (A) and (R) are true but (R) is not the correct explanation for (A).


3 (A) is false and (R) is true.

4 Both (A) and (R) are false.

Case-Based Questions

Study the given information and answer the questions that follow.

Shown below is the rough figure of the side view of a proposed water slide which has to be constructed in a water park.

(Note: The figure is not to scale.)

(Take $\sqrt{2} = 1.4$, $\sqrt{3} = 1.7$, wherever required.)

Q: 3 What should be the measure of the angle between slide 2 and ground if the length of AB is 1.2√3 m?

- **1** 30°
- **2** 45°
- 3 60°

4 90°

Q: 4 What should be the value of tan AGB if the length of slide 2 is 6 m?

1 $\frac{4}{3}$

 $\frac{4}{5}$

 $\frac{3}{4}$

4 $\frac{3}{5}$

 $\frac{Q: 5}{}$ If slide 1 makes an angle of 150° with the flat part and FD = 8.5 m, what is the height of the top point of slide 1 from the ground (EC)?

- **1** 5 m
- **2** 8.6 m
- **3** 10 m
- **4** 12.1 m

Q: 6 What should be the length of slide 2 if the angle between slide 2 and ground is 30°?

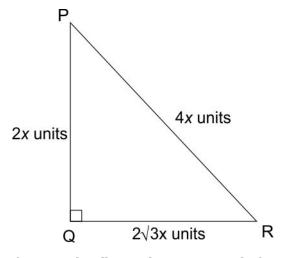
- **1** 4.24 m
- **2** 5.04 m
- **3** 6.12 m
- **4** 7.2 m

Q: 7 If \angle GAB = \angle EFD and \angle AGB = \angle FED, which of these is equal to sec \angle GAB?

- 1 cos ∠EFD
- 2 cos ∠AGB
- **3** cosec ∠FED
- 4 cosec ∠EFD

Free Response Questions

O: 8 Consider the statement given below.


[1]

In a right triangle, the value of cos $A = \sqrt{2}$ for some acute angle A.

Is the statement true or false? Give a valid reason.

Q: 9 Shown below is a right-angled APQR.

[1]

(Note: The figure is not to scale.)

What is measure of ∠QPR? Show your work.

Q: 10 Prove that:

[5]

 $(1 + \tan x + \sec x)^2 = 2(1 + \sec x)(\sec x + \tan x)$

Q.No	Correct Answers
1	4
2	4
3	3
4	1
5	2
6	4
7	3

Q.No	What to look for	Marks
8	Writes that $\cos A = \frac{adjacent}{hypotenuse}$, as hypotenuse is the largest side in a right triangle, the cosine ratio is always less than 1.	0.5
	Concludes that as $\sqrt{2} > 1$, the given statement is false.	0.5
9	Uses an appropriate trigonometric ratio and finds the measure of ∠QPR as 60°. For example:	1
	$\tan \angle QPR = \frac{2\sqrt{3}x}{2x} = \tan 60^{\circ}$	
	=> ∠QPR = 60°	
10	Expands the LHS of the given equation as:	1
	$1 + \tan^2 x + \sec^2 x + 2\tan x + 2\sec x + 2(\tan x)(\sec x)$	
	Uses the identity $sec^2 x - tan^2 x = 1$ to simplify the above expression as:	2
	$2\sec^2 x + 2\tan x + 2\sec x + 2(\tan x)(\sec x)$	
	Regroups the above expression as:	1
	$2\sec x (\sec x + 1) + 2\tan x (\sec x + 1)$	
	Completes the factorisation of the above expression to get RHS as:	1
	2(1 + sec x)(sec x + tan x)	

